

CONGRESO INTERNACIONAL DE LA CONSTRUCCIÓN CON ACERO

2019 Medellín, Centro de Eventos El Tesoro Junio 19, 20 y 21

ACTUALIZACION EN EL DISEÑO DE CONEXIONES PRM

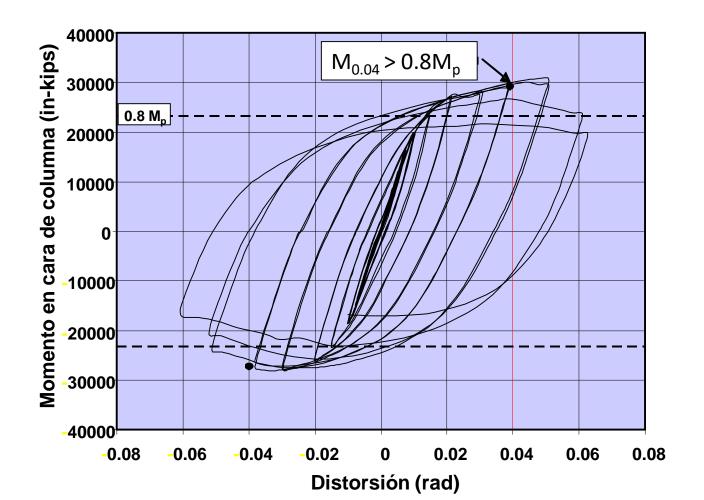
Luis Garza Vásquez I.C. MI

Profesor Asociado Universidad Nacional Sede Medellín

Gerente INHIERRO S.A.

Nota del ICCA

El ICCA no ejerce control sobre el contenido de esta conferencia. Lo tratado en ella refleja sólo la opinión de su autor.


Los invitamos a poner sus teléfonos en silencio.

Gracias

En Colombia se han calificado 17 conexiones PRM

CONEXION	SISTEMA	AÑO	AUTORES	DIRECTORES	Laboratorio
Viga I a PTE Rectangular sin refuerzo	NO	2004	D. Cano, A. Mazo	L. Garza	UN Medellín
Tubo LDF a LDF pernada	DMO	2004	A. Gallo, J. Narváez	C. Bermúdez, L. Garza	UN Medellín
Viga I a PTE Rectangular con refuerzo	DES	2004	J. Posada, C. Pabón	L. Garza	UN Medellín
Viga I a I Soldada con cubreplacas	DES	2005	H. Acero	P. Guerrero, L. Garza	UniValle
Tubo LDF a LDF soldada	NO	2006	E. López	G. Valencia	ECI
Tubo LDF a LDF soldada	DMO	2007	S. Villar	G. Valencia	ECI
Viga I a PTE relleno pernada	DES	2008	M. Uribe	G. Valencia	ECI
Viga I a Doble I soldada	NO	2009	J. Farbiarz	L. Garza	En campo
Viga I a I Soldada con sección reducida	DES	2011	C. Cerón	G. Areiza	UniValle
Viga I expandida a I soldada	DMO	2011	E. Ramírez	G. Areiza	UniValle
Viga I a I embebida	DES	2012	C. Torres	R. Cruz, L. Garza	UIS
Viga I a I por eje débil	DES	2015	C. Andrade	G. Valencia	UniAndes
Viga I a PTE circular relleno	DES	2016	A. Cepeda	L. Garza	EIA
Viga I armada a I armada pernada	DES	2019	M. Suárez	G. Areiza	UniValle
Viga I a PTE circular relleno con diafragma	DES	2019	C. Ramírez	G. Areiza	UniValle
Viga I a columna de concreto reforzado	NO	2019	G. Galindo	G. Areiza	UniValle
Tubo LDF a LDF pernada	DMO	201?	?	C. Bermúdez	UN Manizales

CONEXIONES PRECALIFICADAS EN COLOMBIA HASTA 2012

- Tesis de Maestría en Estructuras
- Universidad Industrial de Santander
- Autor: Carlos Andrés Delgado Rojas
- Director: Luis Garza Vásquez
- Contiene procedimientos de diseño y ejemplos de 4 conexiones:
 - Viga I a PTE Rectangular con refuerzo
 - Viga I a PTE Rectangular relleno
 - Viga I a I embebida
 - Viga I a I soldada

CONSULTAR EN WWW.ICCA.COM.CO

CONEXION	SISTEMA	AÑO	AUTORES	DIRECTORES	Laboratorio
Viga I a PTE Rectangular sin refuerzo	NO	2004	D. Cano, A. Mazo	L. Garza	UN Medellín
Tubo LDF a LDF pernada	DMO	2004	A. Gallo, J. Narváez	C. Bermúdez, L. Garza	UN Medellín
Viga I a PTE Rectangular con refuerzo	DES	2004	J. Posada, C. Pabón	L. Garza	UN Medellín
Viga I a I Soldada con cubreplacas	DES	2005	H. Acero	P. Guerrero, L. Garza	UniValle
Tubo LDF a LDF soldada	NO	2006	E. López	G. Valencia	ECI
Tubo LDF a LDF soldada	DMO	2007	S. Villar	G. Valencia	ECI
Viga I a PTE relleno pernada	DES	2008	M. Uribe	G. Valencia	ECI
Viga I a Doble I soldada	NO	2009	J. Farbiarz	L. Garza	En campo
Viga I a I Soldada con sección reducida	DES	2011	C. Cerón	G. Areiza	UniValle
Viga I expandida a I soldada	DMO	2011	E. Ramírez	G. Areiza	UniValle
Viga I a I embebida	DES	2012	C. Torres	R. Cruz, L. Garza	UIS
Viga I a I por eje débil	DES	2015	C. Andrade	G. Valencia	UniAndes
Viga I a PTE circular relleno	DES	2016	A. Cepeda	L. Garza	EIA
Viga I armada a I armada pernada	DES	2019	M. Suárez	G. Areiza	UniValle
Viga I a PTE circular relleno con diafragma	DES	2019	C. Ramírez	G. Areiza	UniValle
Viga I a columna de concreto reforzado	NO	2019	G. Galindo	G. Areiza	UniValle
Tubo LDF a LDF pernada	DMO	201?	?	C. Bermúdez	UN Manizales

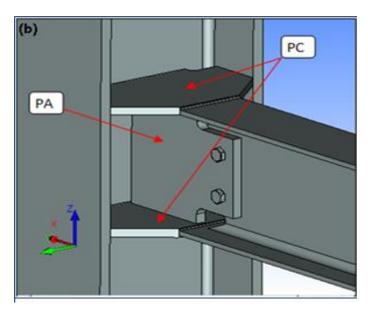
2015 UNIVERSIDAD NACIONAL DE COLOMBIA BOGOTA

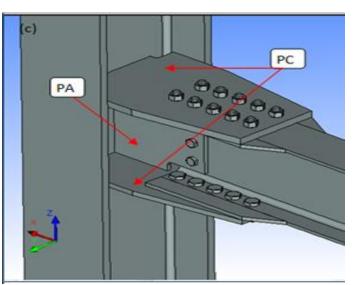
Autor: Carolina Andrade

García

Director: Gabriel Valencia C.

Laboratorio: Universidad De

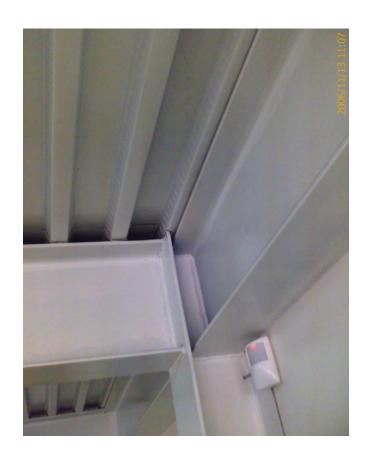

los Andes


Columna: W14x82

Viga: IPE 270, 300 y 330

Conexión: Pernada y Soldada

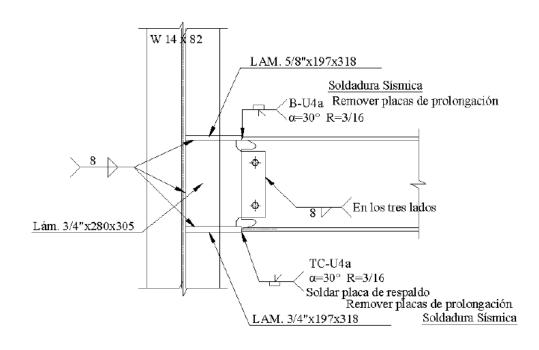
Calificación: DES

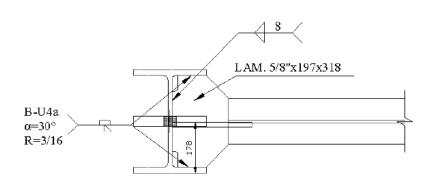


AUNQUE NO SON EFICIENTES, SE HACEN MUCHO

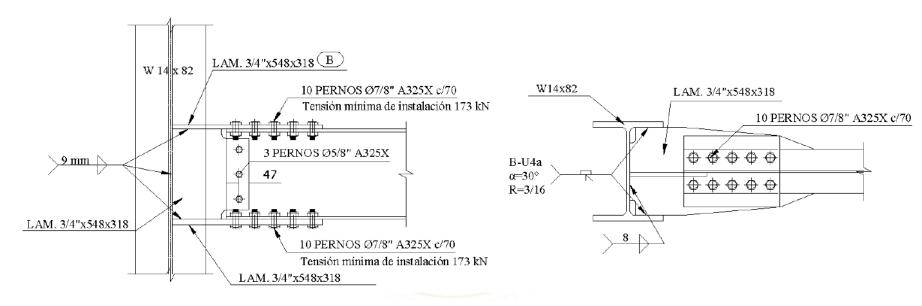
DIFICIL CUMPLIR VIGA DÉBIL-COLUMNA FUERTE

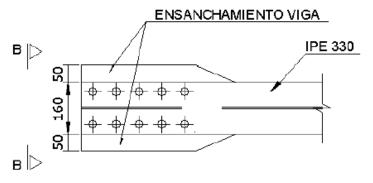
Si es el caso, mejor hacer columnas cruciformes: $d > b_f + 200mm$

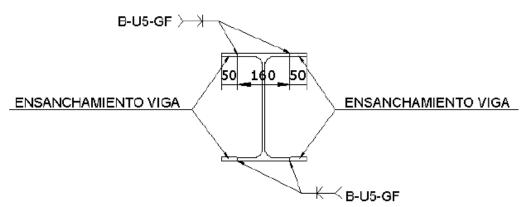




CONEXIÓN SOLDADA CON CUBREPLACAS







CONEXIÓN PERNADA CON CUBREPLACAS

2016 ESCUELA DE INGENIERIA DE ANTIOQUIA

Autor: Angie Estefanía Bustamante

Director: Luis Garza V.

Laboratorio: Escuela de Ingeniería

de Antioquia

Columna: PTE ϕ 508Cx22mm

Viga: IPE 500

Conexión: Pernada

Calificación: DES

Características Columnas Circulares Rellenas de Concreto

- Efecto Arquitectónico Agradable
- El tubo funciona como formaleta
- El tubo suministra el acero longitudinal y transversal
- El tubo confina el concreto
- El concreto reduce el pandeo local
- El concreto mejora el amortiguamiento
- El concreto mejora la resistencia al fuego
- Su rigidez y ductilidad mejoran considerablemente comparado con una columna del mismo diámetro de concreto reforzado
- Mejora la velocidad de construcción
- Uso limitado por dificultad de conexiones
- Pocos ensayos de calificación

Sistema constructivo

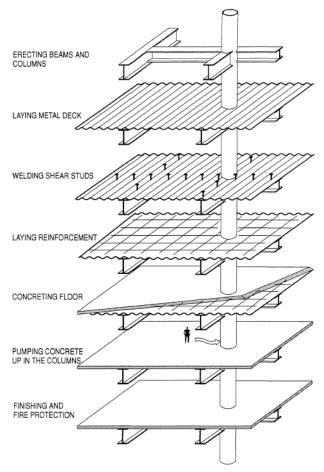
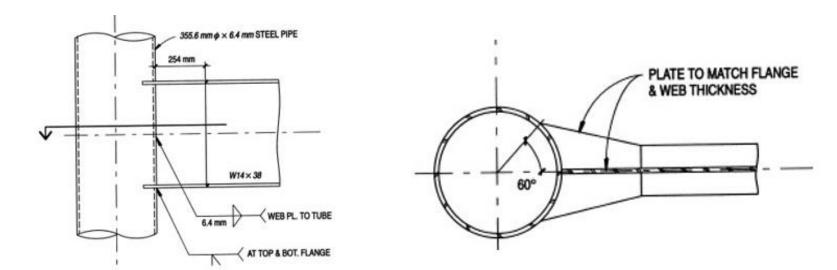
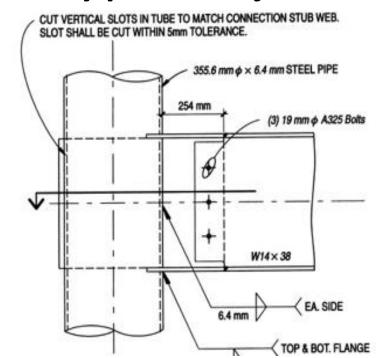


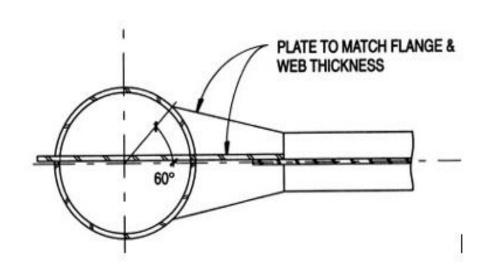
Figure 1.1. Construction Method, Bridge et. al. (1992)



Antecedentes: soldadura directa

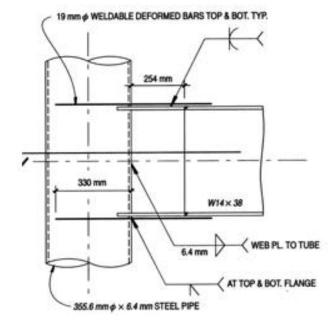
- Conexión soldada directamente al tubo (Alostaz & Shneider, 1996).
- Grandes distorsiones en la pared
- Fuertes concentraciones en la soldadura
- No se alcanza a formar la rótula plástica

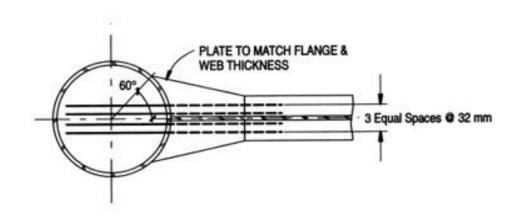




Antecedentes: soldadura directa

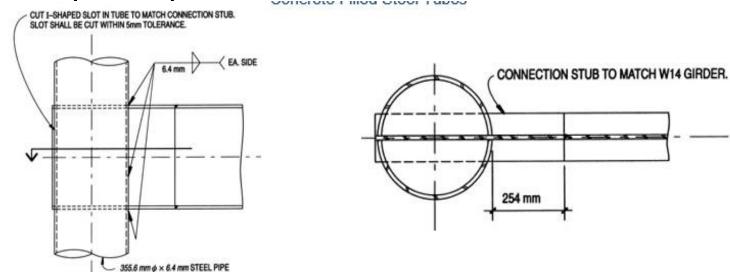
- Conexión soldada directamente al tubo con placa de continuidad del alma (Alostaz & Shneider, 1996).
- Más difícil y pobre mejora





Antecedentes: soldadura directa

- Conexión soldada directamente al tubo con barras de refuerzo en aletas (Alostaz & Shneider, 1996).
- Mayor dificultad y poca mejora
- La soldadura directa no es recomendable



Antecedentes: viga pasante

- Conexión con viga pasando a través de la columna (Alostaz & Shneider, 1996).
- Muy complicada de construir
- Difícil llenado con concreto
- Mejor desempeño que la soldadura directa

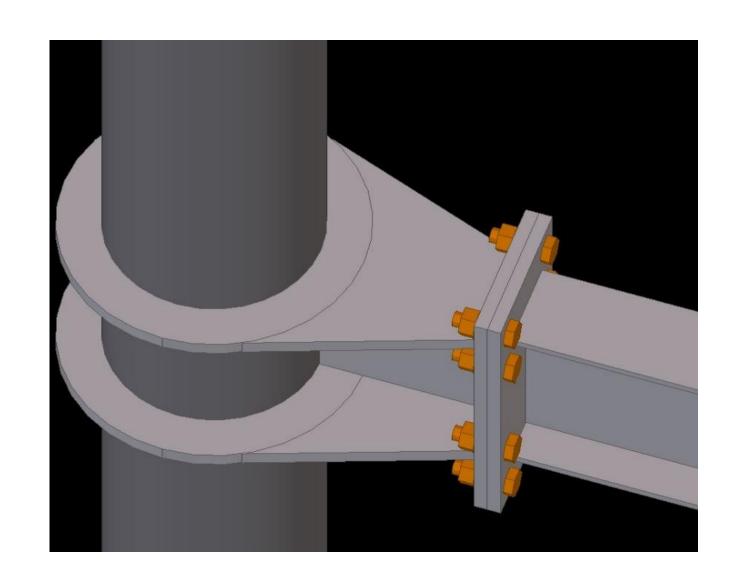
Vigas con diafragmas exteriores soldados

Aparatosa arquitectónicamente
Problemas para instalar fachadas
Soldaduras de campo indeseables
Mucho tiempo de montaje

¡HUECOS DE ACCESO DE CABLES!

¡Póngale cero por bruto!

Vigas con diafragmas exteriores pernadas con placa de extremo

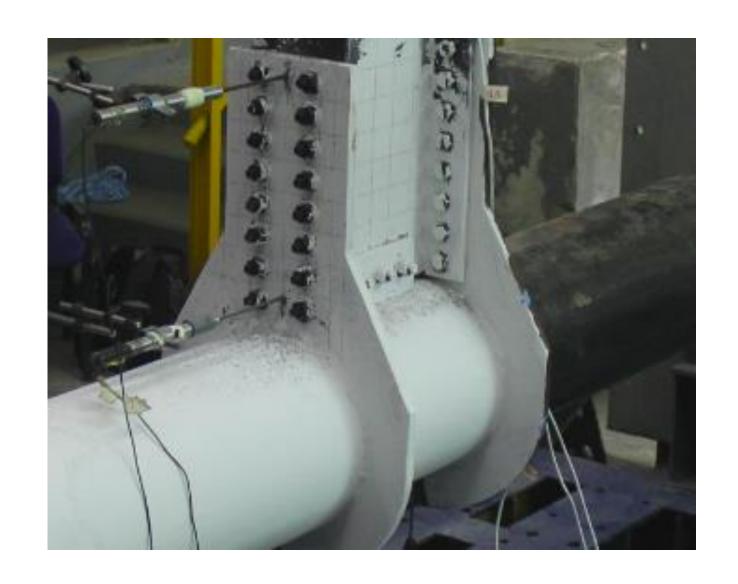

Tesis Maestría Diana Cadavid

Aparatosa arquitectónicamente

Mucho trabajo en taller

Pesadas

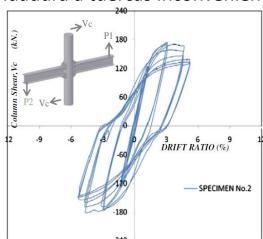
Placa de extremo estorba el tablero metálico

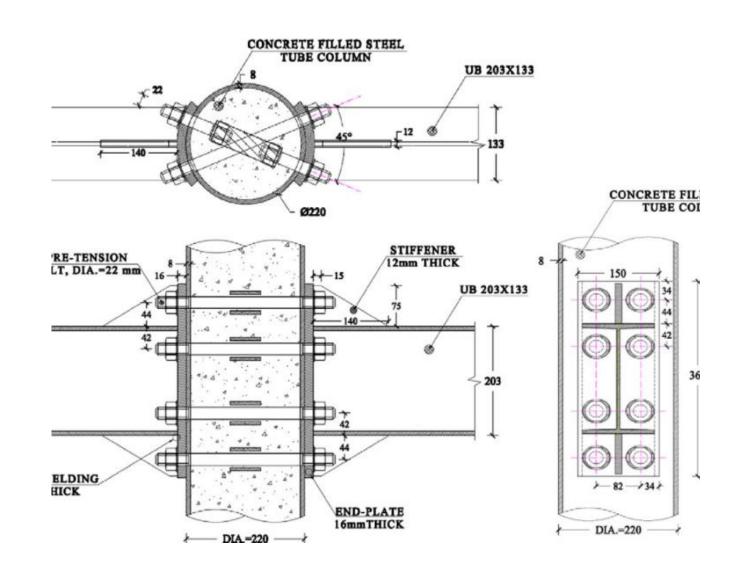


Vigas con diafragmas exteriores pernadas con cubreplacas

Conexión Pernada con Diafragmas exteriores y cubreplacas (Ramirez & Areiza, 2019).

Aparatosa arquitectónicamente
Dificultades para montaje
Poner placas de relleno
Los pernos estorban el apoyo del tablero metálico

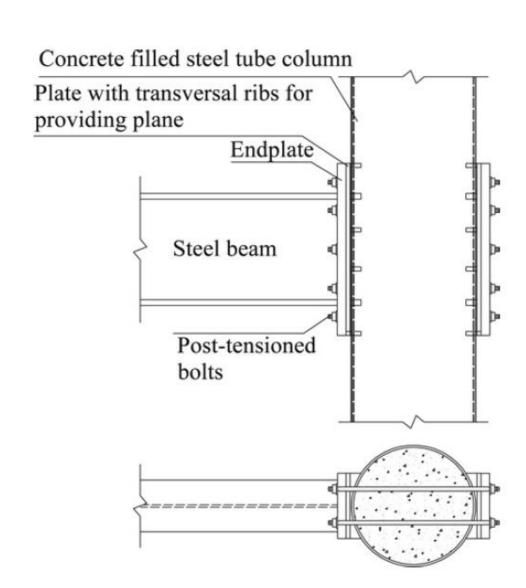

Placas de extremo curvas con pernos pasantes


Conexión pernada con placas de extremo curvas (Sheet, Gunasekaran, & Macrae, 2013)

Difícil colocación de pernos

Rolado placa de extremo curva

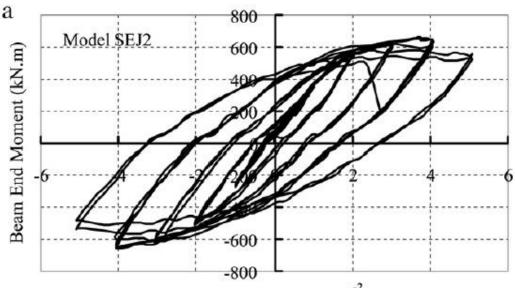
Soldadura a tuercas inconveniente



Placa de extremo con costillitas

Conexión pernada con placas de extremo rectas (Li, Xiao, & Wu, 2009)

La tensión de los pernos pasantes se convierte en compresión en el concreto


Placa de extremo con costillitas

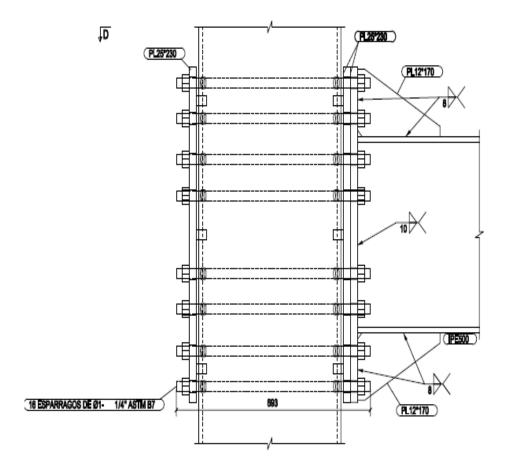
Conexión pernada con placas de extremo rectas: a) curva de histéresis, y b)rótula plástica (Li, Xiao, & Wu, 2009)

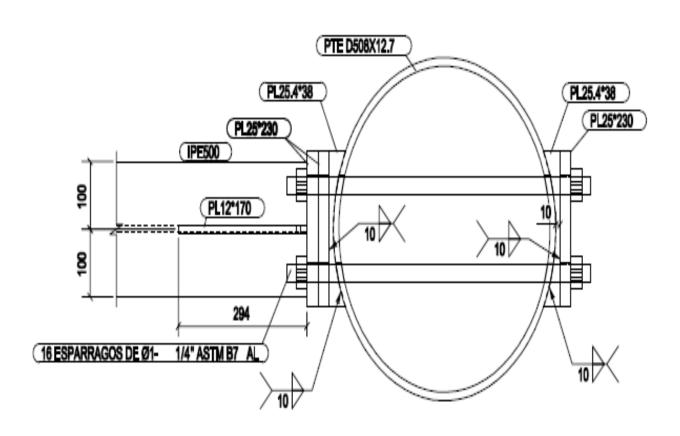
Excelente ductilidad

 ϕ 426x8 con F_y = 275MPa, vigas F_y = 278MPa, y concreto de f'_c = 39MPa

Los materiales ensayados son muy diferentes a los que usamos en Colombia

Beam Rotational Angle (10⁻²rad)



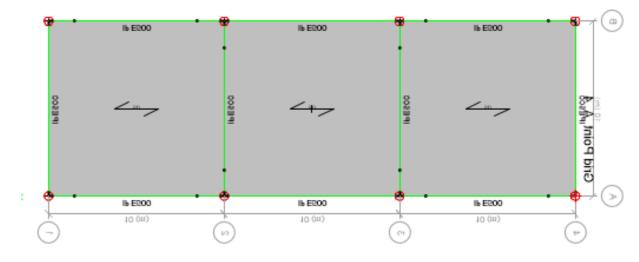


Conexión Ensayada

Configuración del edificio para definir la conexión

Edificio uso industrial DES

Control de derivas y resistencia


Conexión 8ES AISC 358

Revisión aplastamiento concreto

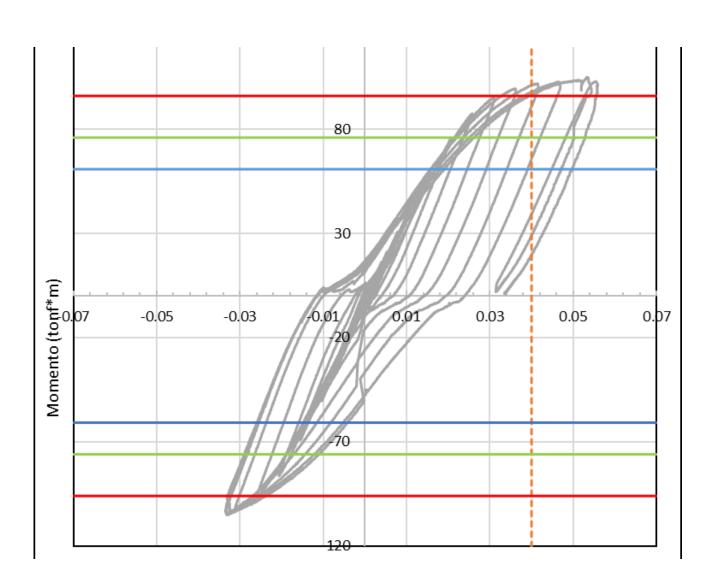
Pernos pretensionados

Características de los materiales utilizados

Elemento	Características	Especificación	F _y MPa	F _u MPa
PTE	ϕ 508x12.7	A53grB	245	420
Viga	IPE 500	A572 Gr 50	387*	547*
Placas	PL25x230	A572 Gr 50	350	455
Pernos	φ32	A193 Gr B7	-	1035
Soldadura	Demanda crítica D.1.8	E70C-6MH4	Charpy 130J@20°C	
Concreto			f' _c = 21	

Resultados

Fluencia limitada en aletas


Curva de histéresis

No simétrica por fallas de lectura

Cumple para DES

No es totalmente rígida

Estrechamiento es normal en conexiones con pernos pasantes

DETALLE IMPORTANTE

• Se tiene que hacer una junta entre la losa de concreto y la columna, ya que la resistencia y comportamiento a cargas cíclicas difiere en forma apreciable si la losa está conectada (Li, Xiao, & Wu, 2009), además de que, al aumentar considerablemente la resistencia de la viga, se dificulta cumplir la condición viga débilcolumna fuerte, y esto obligaría a aumentar el tamaño de la columna.

2019 UNIVERSIDAD DEL VALLE

Autor: Mónica María Suarez

Director: Gilberto Areiza

Laboratorio: Universidad del

Valle

Columna: Armada 380x32x380x19

Viga: Armada 510x15x200x12

Conexión: Pernada

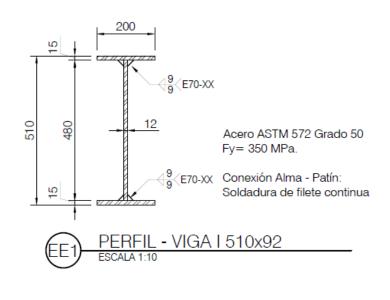
Calificación: DES

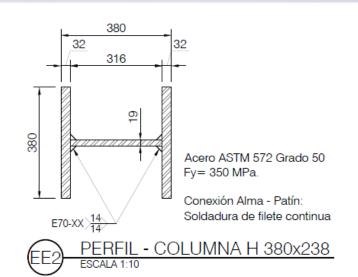
AISC358-16 PREQUALIFIED CONNECTIONS

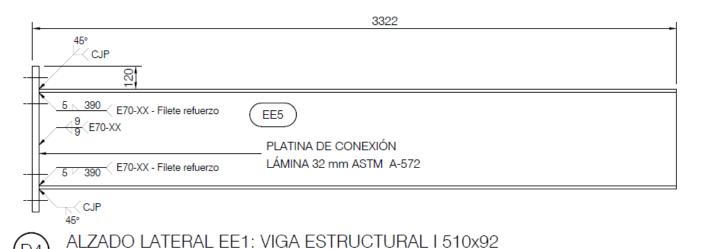
Built-up Beams

The web and flanges shall be connected using complete-joint-penetration (CJP) groove welds with a pair of reinforcing fillet welds within a zone extending from the beam end to a distance not less than one beam depth beyond the plastic hinge location, S_h , unless specifically indicated in this Standard. The minimum size of these fillet welds shall be the lesser of $\frac{5}{16}$ in. (8 mm) and the thickness of the beam web.

Exception: This provision shall not apply where individual connection prequalifications specify other requirements.







11	De:	100-3
90	:.oN	::0N ONAJ9

UNIVERSIDAD DEL VALLE FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL Y GEOMÁTICA MAESTRÍA EN ESTRUCTURAS

PROYECTO DE GRADO:

Validación de conexiones resistentes a momento de acuerdo con los requisitos de las provisiones sísmicas ANSI(AISC 358-16) usando perfiles armados

DIRECTOR:

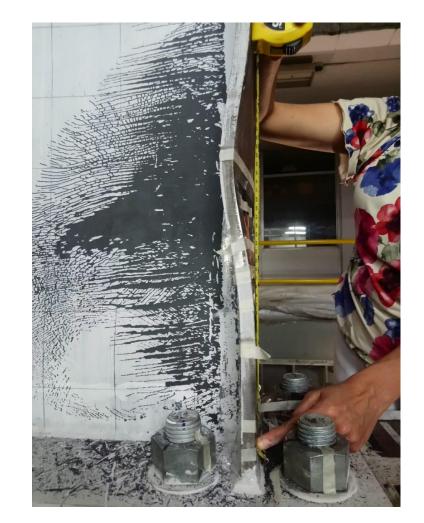
Ing. Civil, MSc GILBERTO AREIZA PALMA Profesor Titular

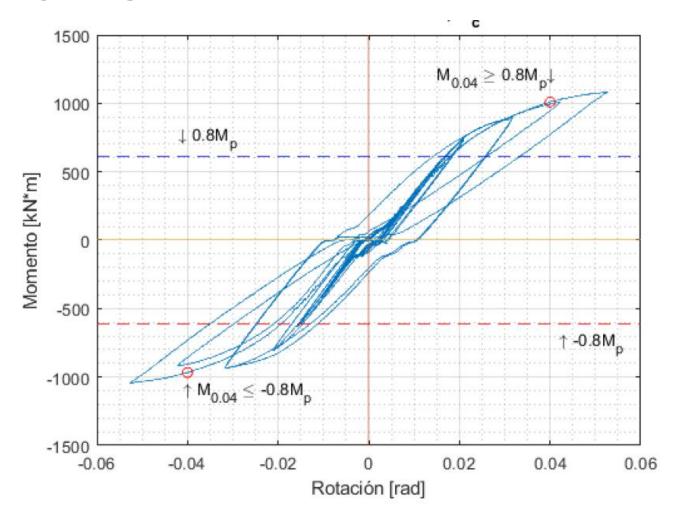
ESTUDIANTE:

Ing. Civil MÓNICA MARÍA SUAREZ CH. Código: 201304061

CONTIENE:

Características geométricas de los perfiles armados: H 380x238 e I 510x92 Detalle: EE1 - I 510x92


ESCALA:	FECHA:			
1:10 - 1:15	24/10/2017			
PLANO No.:	No.: 05			
E-501	De: 11			



RESULTADOS DEL ENSAYO

Ensayos de tintas penetrantes en filetes

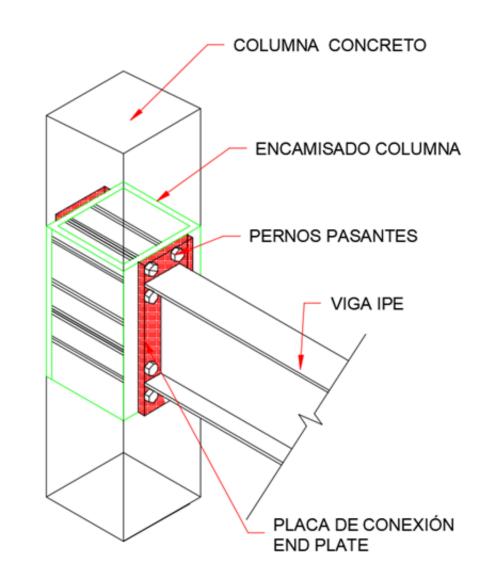
2019 UNIVERSIDAD DEL VALLE

Autor: Gildardo Galindo

Director: Gilberto Areiza

Laboratorio: Universidad del

Valle

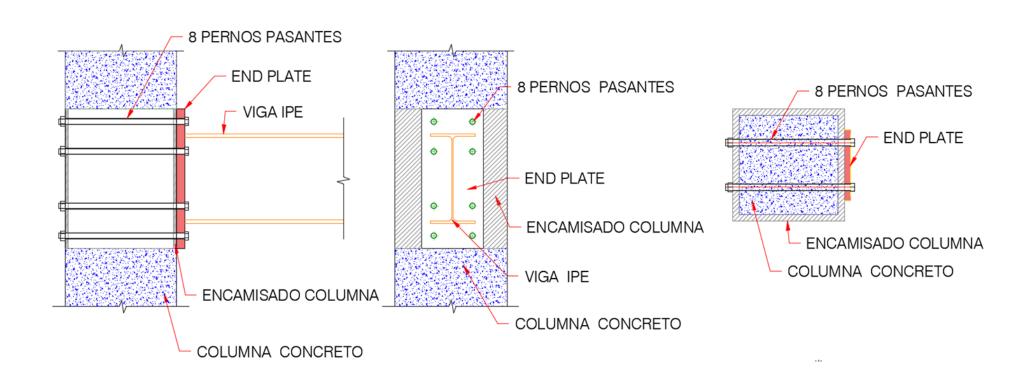

Columna: Concreto

400x400mm

Viga: IPE 360

Conexión: Pernada

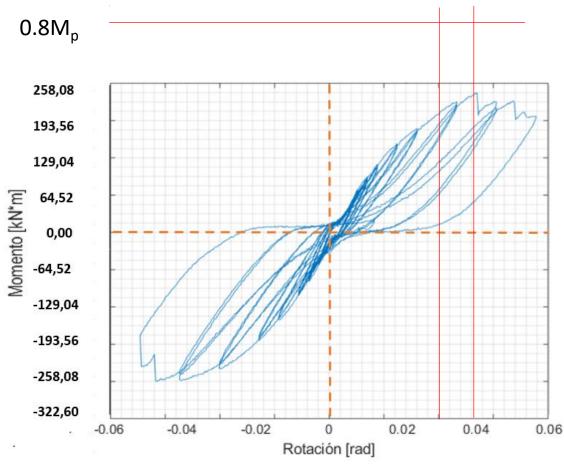
Calificación: Descalificada



VISTA LATERAL

VISTA FRONTAL

SECCION



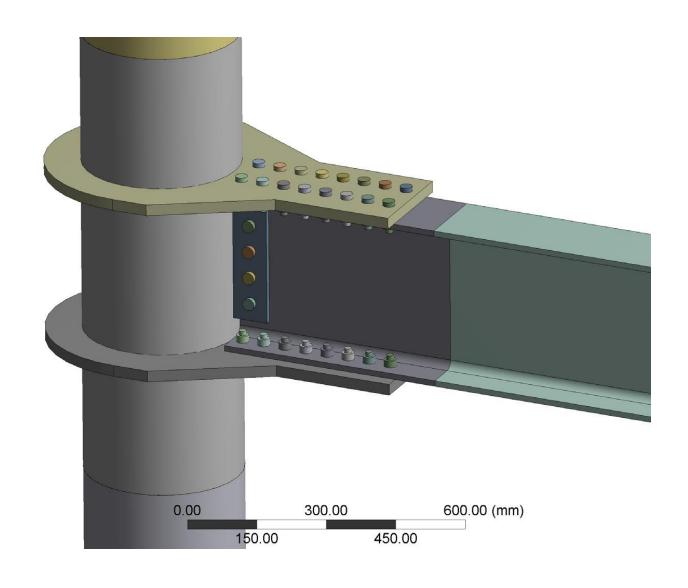
$M_{0.04} = 255KN-m < 0.8M_p = 316KN-m \rightarrow NO CALIFICA$

2019 UNIVERSIDAD DEL VALLE

Autor: Cristian Ramírez

Director: Gilberto Areiza

Laboratorio: Universidad del Valle

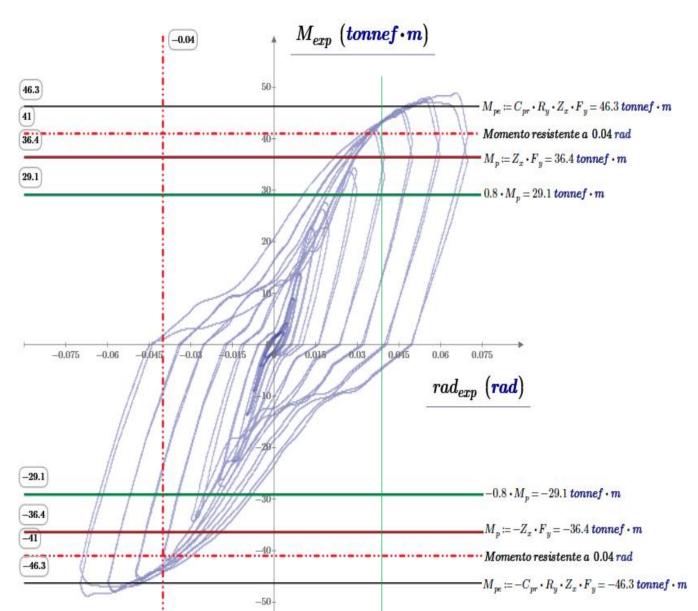

Columna: PTE circular rellena

 ϕ 324x10mm

Viga: IPE 360

Conexión: Pernada

Calificación: DES



¡ALCANZÓ HASTA EL 7% DE ROTACION!

¿Rigidez de la conexión? Tarea pendiente.....

Reporte de Calificación muy detallado con procedimiento de diseño y ejemplo.

Análisis paramétrico con MEF calibrado al ensayo

PRECAUCION

- La cantidad de ensayos es reducida
- Es mejor saber algo que nada
- Usar criterio del ingeniero
- AISC 341-16 establece requisitos muy estrictos

2b. Authority for Prequalification

Prequalification of a connection and the associated limits of prequalification shall be established by a connection prequalification review panel (CPRP) approved by the authority having jurisdiction.

PROPUESTA NSR-20

- **F.3.5.3.6.3** *Validación de la conexión* Las conexiones viga a columna del SRS deben satisfacer los requisitos de F.3.5.3.6.2 mediante una de las siguientes condiciones:
- Uso de conexiones PRM-DES diseñadas de acuerdo con ANSI/AISC 358.
- Uso de una conexión para PRM-DES precalificada de acuerdo con F.3.11.1.
- Ensayos cíclicos de calificación de acuerdo con F.3.11.2. Deben documentarse los resultados de al menos dos ensayos cíclicos de la conexión, los cuales deben basarse en una de las validaciones siguientes:
- Ensayos reportados en artículos de investigación o ensayos documentados realizados para otros proyectos que representen las condiciones del proyecto, con los límites especificados en F.3.11.2.
- Ensayos enfocados específicamente para el proyecto que sean representativos de los tamaños de los miembros, resistencia del material, configuración de conexiónes, procesos constructivos de la conexión, dentro de los límites especificados en F.3.11.2.
- Para que se pueda usar una conexión precalificada distinta de las incluidas en F.3.11.1.2.2, es necesario que la misma haya sido avalada al menos por un ingeniero calificador de conexiones (ICC).

2008 UNIVERSIDAD NACIONAL BOGOTA

Autor: Maritza Uribe

Director: Gabriel Valencia.

Laboratorio: Escuela de Ingeniería

Columnas: PTE rectangular armado A36 200 a 310x300x5, 6 y 8mm +

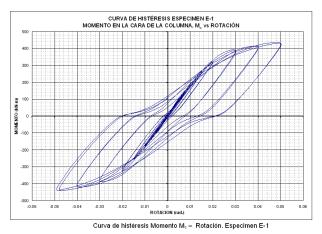
Concreto f'_c=21MPa

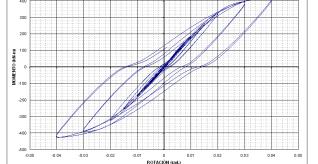
Vigas: IPE 360

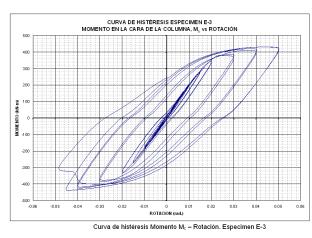
Conexión: Pernada

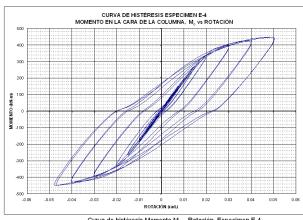
Calificación: DES

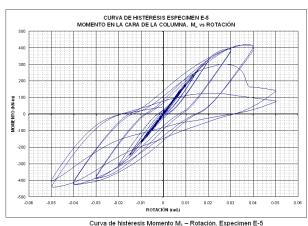
6 Especímenes con varias columnas y una viga

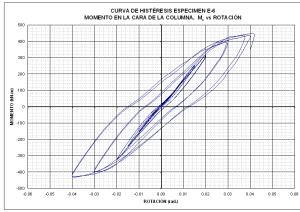

Especimen	Sección columna (ASTM A36)	Espesor t (mm)	Relación (b/t)	Rellena de concreto	Sección viga (A36)	Tipo conexión	Número de ensayos cíclicos
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
E-1	250x300x3/16"	4.76	52	Si	IPE-360	Conexión con placa extendida y 8 pernos pasantes	1
E-2	250x300x1/4"	6.35	39	Si	IPE-360		1
E-3	250x300x5/16"	7.94	31	Si	IPE-360		1
E-4	200x300x1/4"	6.35	31	Si	IPE-360		1
E-5	300x300x1/4"	6.35	47	Si	IPE-360		1
E-6	310x300x5/16"	7.94	39	Si	IPE-360		1
Número total de ensayos cíclicos							



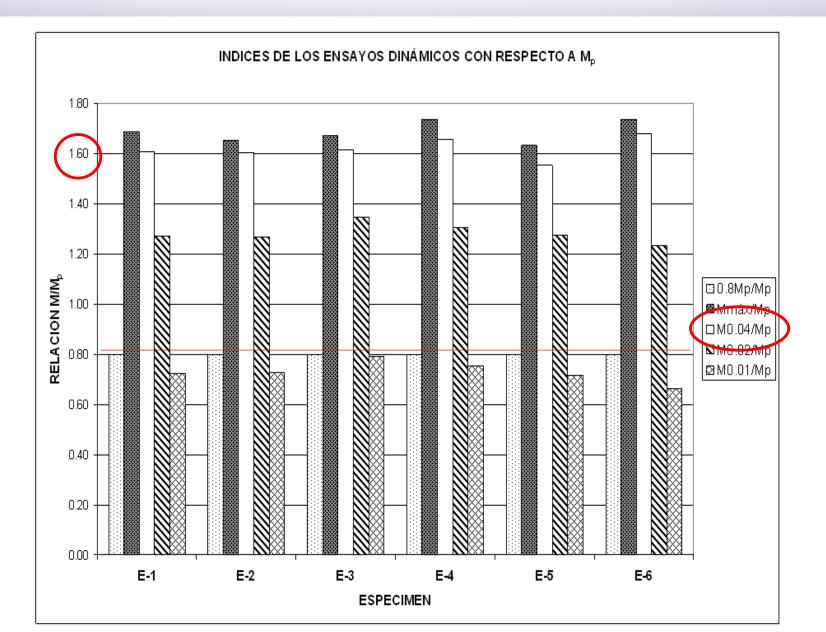

Curvas Momento calculado en la cara de la columna




CURVA DE HISTÉRESIS ESPECIMEN E-2


MOMENTO EN LA CARA DE LA COLUMNA, M. vs ROTACIÓN

Curva de histéresis Momento Mc - Rotación, Especimen E-2



Curva de histéresis Momento Mc - Rotación. Especimen E-4

Curva de histéresis Momento Mc - Rotación, Especimen E-6

Conexiones México

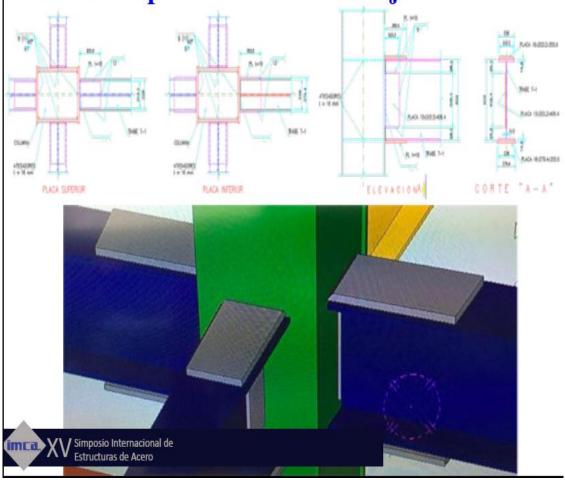
Conexiones viga IR a columna OR: Programa experimental México-Japón-EEUU

Dr. Tiziano Perea Profesor-Investigador. UAM-A

M.I. Hiram Jesús de la Cruz Candidato a Doctor. UAM-A

Jueves 7 de marzo de 2019 Puerto Vallarta, México.

Conexión típica con columna cajón en México



Conexión típica con columna cajón en México

Especímenes de pruebas experimentales

,,	Columna		Viga		G	D (27.1.1	
#	Sección	h/t	Material	Sección	Material	Conexión	Ductilidad
E3	OR406.4 × 8 (HSS16 × 5/16)	51.2	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Viga muñón trapecial soldado a viga y columna	*Baja (0.015)
E2	OR406.4×16 (HSS 16×5/8)	25.6	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Viga soldada CJP a diafragma atravesado	☐Media (0.03)
E5	OR406.4×16 (HSS 16×5/8)	25.6	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Diafragma exterior soldado	OAlta (0.06)
E6	OR406.4 × 16 (HSS 16 × 5/8)	25.6	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Diafragma exterior atornillado con atiesador	OAlta (0.04)
E9	OR406.4 × 16 (HSS 16 × 5/8)	25.6	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Viga soldada CJP a diafragma atravesado	OAlta (0.04)
11	OR406.4 × 16 (HSS 16 × 5/8)	25.6	NMX B-199 (ASTM A500-B)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Diafragma exterior soldado	?
E1	4PL406.4×16 (4PL16×5/8)	25.6	NMX B-284 (ASTM A572-50)	IR610×101 (W24×68)	NMX B-284 (ASTM A992)	Viga soldada con CP a columna c/diafragma interno	*Baja (0.02)

TAREAS PENDIENTES ICCA

- Revisar traducción AISC 358 realizada por Andrés Guzmán y publicarla
- Elegir conexiones más prácticas
- Promover ensayos complementarios (ICCA los financia)
- ¿Análisis paramétricos calibrados a partir de ensayos????

iGRACIAS!